博客
关于我
杂谈:经典算法之八皇后问题
阅读量:304 次
发布时间:2019-03-03

本文共 1233 字,大约阅读时间需要 4 分钟。

八皇后问题作为算法问题中的经典题目之一,具有广泛的应用价值。本文将从问题描述、算法解析以及代码实现三个方面对该问题进行详细分析。

八皇后问题的目标是在一个N×N的棋盘上放置N个皇后,使得它们互不攻击。国际象棋皇后具有攻击范围覆盖行、列和对角线的特性,因此放置时需要确保每行、每列以及每条对角线上只有一个皇后。

问题描述

在一个N×N的棋盘上放置N个皇后,确保它们之间互不攻击。具体来说,每个皇后不能在同一行、同一列或同一对角线上与其他皇后相邻。这一约束条件使得问题具有较高的复杂性。

算法解析

解决N皇后问题的最常用方法是回溯算法(Depth-First Search, DFS)。回溯算法通过尝试所有可能的排列组合来寻找可行解,采用递归的方式逐步深入问题的各个可能性。当发现一个排列不符合条件时,会回溯到上一步,尝试下一个可能性。

具体来说,算法从第一行开始,逐行放置皇后。在每一行中,尝试将皇后放置在每一列的位置上。为了提高效率,需要记录已经放置的皇后位置,避免重复检查相同的列或对角线。若发现当前位置不符合放置条件,则剪枝,尝试下一个位置。

代码实现

以下是Python语言实现的回溯算法,用于计算N皇后问题的解的总数:

class Solution:    def totalNQueens(self, n: int) -> int:        ans = 0        cache = []        def dfs(i):            nonlocal ans, cache            if i >= n:                ans += 1                return            for j in range(n):                if not is_safe(i, j, cache):                    continue                cache.append((i, j))                dfs(i + 1)                cache.pop()        dfs(0)        return ansdef is_safe(i, j, cache):    for x, y in cache:        if x == i or y == j or abs(x - i) == abs(y - j):            return False    return True

总结

通过以上分析,可以看出回溯算法在解决N皇后问题时的核心思想。通过对每一行的每一列进行尝试,并结合已放置的皇后位置进行有效性检查,最终找到所有符合条件的解。该算法的时间复杂度为O(N!), 在实际应用中,较大的N值可能会导致性能问题,因此需要进一步优化算法或采用其他方法来提高计算效率。

转载地址:http://gnyl.baihongyu.com/

你可能感兴趣的文章
nopcommerce商城系统--文档整理
查看>>
NOPI读取Excel
查看>>
NoSQL&MongoDB
查看>>
NoSQL介绍
查看>>
NoSQL数据库概述
查看>>
Notadd —— 基于 nest.js 的微服务开发框架
查看>>
NOTE:rfc5766-turn-server
查看>>
Notepad ++ 安装与配置教程(非常详细)从零基础入门到精通,看完这一篇就够了
查看>>
Notepad++在线和离线安装JSON格式化插件
查看>>
notepad++最详情汇总
查看>>
notepad++正则表达式替换字符串详解
查看>>
notepad如何自动对齐_notepad++怎么自动排版
查看>>
Notes on Paul Irish's "Things I learned from the jQuery source" casts
查看>>
Notification 使用详解(很全
查看>>
NotImplementedError: Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty()
查看>>
NotImplementedError: Could not run torchvision::nms
查看>>
nova基于ubs机制扩展scheduler-filter
查看>>
Now trying to drop the old temporary tablespace, the session hangs.
查看>>
nowcoder—Beauty of Trees
查看>>
np.arange()和np.linspace()绘制logistic回归图像时得到不同的结果?
查看>>